全国

热门城市 | 全国 北京 上海 广东

华北地区 | 北京 天津 河北 山西 内蒙古

东北地区 | 辽宁 吉林 黑龙江

华东地区 | 上海 江苏 浙江 安徽 福建 江西 山东

华中地区 | 河南 湖北 湖南

西南地区 | 重庆 四川 贵州 云南 西藏

西北地区 | 陕西 甘肃 青海 宁夏 新疆

华南地区 | 广东 广西 海南

  • 微 信
    高考

    关注高考网公众号

    (www_gaokao_com)
    了解更多高考资讯

  • 家长帮APP
    家长帮

    家长帮APP

    家庭教育家长帮

    iPhone Android

首页 > 高考总复习 > 高考数学复习方法 > 高中数学重要知识点排列组合公式
试题

资讯

试题

高中数学重要知识点排列组合公式

2019-01-30 19:12:59三好网

  高中数学重要知识点:排列组合公式

  排列组合公式/排列组合计算公式

  排列P------和顺序有关

  组合C-------不牵涉到顺序的问题

  排列分顺序,组合不分

  例如把5本不同的书分给3个人,有几种分法。“排列”

  把5本书分给3个人,有几种分法“组合”

  1.排列及计算公式

  从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

  2.组合及计算公式

  从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号

  c(n,m)表示。

  c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

  3.其他排列与组合公式

  从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r).

  n个元素被分成k类,每类的个数分别是n1,n2,……nk这n个元素的全排列数为

  n!/(n1!*n2!*……*nk!).

  k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

  排列(Pnm(n为下标,m为上标))

  Pnm=n×(n-1)……(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

  组合(Cnm(n为下标,m为上标))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

  2008-07-0813:30

  公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1

  从N倒数r个,表达式应该为n*(n-1)*(n-2).(n-r+1);

  因为从n到(n-r+1)个数为n-(n-r+1)=r

  举例:

  Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

  A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

  上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)

  Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?

  A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

  上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1

  排列、组合的概念和公式典型例题分析

  例1设有3名学生和4个课外小组。(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加。各有多少种不同方法?

  解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法。

  (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法。

  点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算。

  例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?

  解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

  ∴符合题意的不同排法共有9种。

  点评按照分“类”的思路,本题应用了加法原理。为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型。

  例3判断下列问题是排列问题还是组合问题?并计算出结果。

  (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?

  (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

  (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

  (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

  分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题。其他类似分析。

  (1)①是排列问题,共用了封信;②是组合问题,共需握手(次).

  (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法。

  (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积。

  (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法。

  例4证明。

  证明左式

  右式。

  ∴等式成立。

  点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化。

  例5化简。

  解法一原式

  解法二原式

  点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化。

  例6解方程:(1);(2).

  解(1)原方程

  解得。

  (2)原方程可变为

  ∵,

  ∴原方程可化为。

  即,解得

[标签:高考备考 复习方法]

分享:

高考院校库(挑大学·选专业,一步到位!)

高考院校库(挑大学·选专业,一步到位!)

高校分数线

专业分数线

高考关键词